Реферат: Пути развития современных ТЭС

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

 

Федеральное агентство по образованию

 

Государственное образовательное учреждение высшего профессионального образования «Новосибирский государственный технический университет»

 

 

 

 

 

 

РЕФЕРАТ

 

на тему  «Пути развития современных ТЭС»

 

по дисциплине «Введение в направление»

 

 

 

 

Проверил:                                                           Выполнил:

 

проф. Щинников П.А.                                       студент      Божков А.Ю.

                                                                           группа        ТЭ-61

Отметка о защите

 

________________

 

 

 

 

 

 

 

 

 

 

 

 

Новосибирск, 2010


Введение

 

Направления развития перспективных технологий ТЭС можно разделить на 3 основных: совершенствование термодинамических циклов, совершенствование схемной и элементной базы и совершенствование сжигания топлива. В данной работе освещены новые технологии развития котельной части ТЭС, в том числе: сжигание угля в вихревой топке, технология термоподготовки топлива, плазменный розжиг и стабилизация горения основного факела, технология сжигания твердого топлива в котлах с кольцевой топкой, технология сжигания композитного жидкого топлива.
1. Сжигание угля в вихревой топке

Конструкции опытных и серийных котлов с вихревой топкой для энергоблоков различной мощности разрабатываются на базе обширного комплекса опытно-конструкторских и научно-исследовательских работ. Основная особенность конструкции котла: в нижней части имеется горизонтальная вихревая камера высокотемпературного горения с фронтальным расположением горелок, соединенная с камерой охлаждения.

/>Выполненные к настоящему времени комплексные исследования теплотехнологических процессов в вихревой топке позволяют надежно конструировать высокоэффективные топки со ступенчатым сжиганием, что решает проблему снижения выбросов окислов азота. Экспериментальные исследования аэродинамики вихревых топок на изотермических воздушных и гидравлических моделях и математическое моделирование аэродинамических процессов дали возможность установить основные геометрические соотношения в рационально спроектированных вихревых топках, а математическое моделирование лучистого теплообмена в вихревой топке позволило подробно вскрыть картину процесса горения в вихревой камере, процессов теплообмена в камере, определить оптимальные значения коэффициентов избытка воздуха при ступенчатом сжигании, установить условия минимального выхода окислов азота в режиме жидкого шлакоудаления.

Элементная база технологии сжигания топлива в вихревой топке зависит от того, устанавливается ли эта технология при реконструкции котла или она используется на проектируемой станции.

На вновь проектируемой станции использование котлоагрегата с вихревой топкой позволяет значительно сократить габариты котлоагрегата и тем самым снизить капиталовложения в основное оборудование. При этом пылесистема проектируется в соответствии с требованиями вихревой технологии. Эти требования не вызывают появления новых элементов в технологической схеме ТЭС и изменения рабочих параметров.

При реконструкции функционирующих ТЭС установка вихревой топки на реконструируемом котлоагрегате требует, во-первых, существенной переделки самого котлоагрегата и, во-вторых, возможной переделки пылесистем.

Применение вихревой технологии обусловливает из­менения: гаммы теплив в связи с бесшлаковочным сжига­нием канско-ачинских углей в котлоагрегатах с вихре­вой топкой и жидким шлакоудалением, режимных параметров котла и надежностных параметров, коэффициента готовности котлоагрегата из-за повышенного износа тепловоспринимающих поверхно­стей при вихревом сжигании твердого топлива, экологических параметров.

2. Технология термоподготовки топлива

Сущностью термической подготовки пылевидно­го топлива является предварительная частичная аллотермическая его газификация при температурах 600...800°С и выше доли размолотого угля в горелочном устройстве, либо полностью всего потока угля в специальном предтопке, например, циклон­ного типа. Прогрев рабочего потока угольной пыли осуществляется за счет сжигания высокореакци­онного топлива, в качестве которого могут исполь­зоваться газ, мазут или высокореакционный уголь, на­пример КАУ.

/>Поток высококонцентрированной угольной пыли 3 тангенциально поступает в установку 1, выполненную в виде цилиндра, и образует реакторное пространство, внутрь которого направляется горящее высокореакционное топливо2 с концентрацией кислорода, обеспечивающей устойчивое горение. В предтопке поток рабочего топлива прогревается с образованием двухфазного топлива – газовзвеси, содержащей в основном окись углерода, водород, непрореагировавшую угольную пыль, коксовый остаток, метан, углекислый газ и азот. На выходе из предтопка газовзвесь смешивается со вторичным воздухом и вместе с продуктами сгорания инициирующего топлива поступает в топку котла. Для надежного воспламенения и регулирования процесса горения на начальном участке факела часть вторичного воздуха отбирается и подается в коллектор, откуда через спец.трубки, расположенные под углом к оси движения газовзвеси и по касательной к образующей ТЦП. При необходимости возможно добавление пара или воздуха для частичной газификации рабочего топлива, а также применение стадийного сжигания 6.

Недостатком технологий с термической подготовкой топлива можно считать усложнение системы топливоподготовки по сравнению с традиционными из-за необ­ходимости создания двух потоков топлива (рабочего и инициирующего) и организации паровоздушного дутья для частичной газификации. Однако эти усложнения не связаны с созданием принципиально нового и уникаль­ного оборудования, так как для потока инициирующего топлива используется станционное газовое или мазутное хозяйство, а в случае использования в качестве ини­циирующего топлива высокореакционного угля топливоподготовка для него выглядит аналогично схемам с прямым вдуванием пыли. Для потока рабочего угля топливоподготовка аналогична схемам с промбункером. Отбор пара для частичной газификации может осуще­ствляться, например, из станционного коллектора соб­ственных нужд. Кроме того, большинство станций уже оборудованы мазутным хозяйством, а многие имеют и газовое, что упрощает внедрение технологии в рамках реконструкции действующих станций.

3. Технология плазменного розжига твердого топлива

В основе технологии лежат процессы термодеструкции и пиролиза твердого топлива под воздействием температуры. Однако направленность технологии и ее техническое оснащение отличны от технологии термоподготовки топлива в ТЦП. Технология плазменного розжига – это в первую очередь средство повышения реакционной способности твердого топлива. В последнее время эта технология рассматривается и как средство снижения выбросов оксидов азота.

Плазменный розжиг и подсветка пылеугольного факела направлены на вытеснение из топливного баланса ТЭС мазута на эти нужды. Технология заключается в обработке струей низкотемпературной плазмы (3500…5000 <span style=«font-size: 14pt; font-family: „Cambria Math“;»>℃

) потока угольной пыли, транспортируемой воздухом. Высокая температура теплового удара приводит к прогреву топлива со скоростью 103…104 К/с при размерах частиц менее 250 мкм, при этом достигается конечная температура частиц 800…900 ℃и выше, что интенсифицирует разложение органической части топлива.

/>После обработки плазмой поток газовзвеси содержит в себе деструктурированные частицы угля газы, в том числе и легко воспламеняющиеся водород, метан и окись углерода. Такой состав газовзвеси  позволяет надежно воспламенять и стабильно поддерживать горение основного пылеугольного факела в топке парогенератора.

Плазменная технология является технически осуществимой и технологически простой в управлении. Поток плазмы создается в плазмотроне, конструкция которого показана на рис. 3.1, и может быть вмонтирован в пылеугольную горелку или установлен в специальном муфеле под основной горелкой. Плазмотрон состоит из анода 1, катода 2, кольца закрутки плазмообразующего воздуха 3 и охлаждаемого одой корпуса 4. Тепловая мощность плазмотрона составляет не более 1,5% от тепловой мощности потока аэропыли.

4. Технология сжигания топлива в котле с кольцевой топкой

Кольцевая топка (КЦТ) представляет дальнейшее развитие тангенциальных топок, отличительной особенностью которых является вихревой характер течения газов.Продукты сгорания в такой топке движутся сравни­тельно узким спирально-вихревым потоком в пристенной области топки, а в центральной (приосевой) области топки по всей ее высоте практически отсутст­вует активное движение факела. Поперечный размер (диаметр) этой малоактивной зоны достигает 40...50% сечения топки, что позволяет эффективно использовать ее для размещения надежно работающих дополнитель­ных (в виде ассиметричной вставки) поверхностей нагрева. При таком решении вращающийся факел оказывается зажатым в кольцевом пространстве между внутренними и наружными экранами, в результате чего условия смешения, выгорания и теплообмена в таком топочном объеме становятся другими по сравнению с традиционными топками.

Применение кольцевых топок для мощных котлов позволяет уменьшить их высоту на 30...40 % и за счет этого сократить металлоемкость и капиталоемкость котлов.

/>Технологической особенностью котлов с КЦТ является топка, представляющая собой мно­гогранную призму, внутри которой по всей ее высоте коаксиально установлена многогранная экранирован­ная вставка.При   восьмигранном  сечении аэродинамика  топки близка к течению в цилиндрической кольцевой камере. Стены внутренней и наружной камер выполнены из цельносварных газоплотных панелей. В нижней час­ти топки экраны наружной камеры отгибаются внутрь и образуют многоскатную холодную воронку. В верхней части топки к боковым стенам наружной камеры при­мыкают горизонтальные конвективные газоходы, число которых может быть 2 или 4. Горелочные устройства устанавливаются на каждой стене топки в один или не­сколько ярусов (в зависимости от мощности котла). Оси горелок направлены по касательным к условной окруж­ности, диаметр которой выбирается с учетом шлакующих характеристик угля. Особенностью воспламенения факела в кольцевой топке является прогрев и зажига­ние топливно-воздушной смеси (вытекающей из щеле­вой прямоточной горелки) в основном за счет набегаю­щего от предыдущих (по ходу вращения) горелок мощ­ного вихревого потока высокотемпературных топочных газов. В вертикально-щелевых прямоточных горелках аэросмесь подается со стороны набегающего (поджи­гающего) потока  высокотемпературных то­почных газов, а вторичный воздух вводится со стороны наружного экрана, к которому отжимается весь факел.

5. Технология сжигания композитного жидкого топлива

Композитное жидкое топливо (КЖТ) готовится в системе топливоподготовки энергоблока на основе торфяного геля и водоугольной суспензии. Предварительно измельченный торф подают в емкость для приготовления коллоидной смеси. В эту же емкость подают воду. Воду и торф смешивают в заданном соотношении. После предварительно смешивания в емкости торфоводяной раствор направляют в диспергатор-кавитатор, где происходит окончательный размол торфа с образованием коллоидной смеси заданного качества. Регулирование процесса осуществляют кратностью обработки смеси в диспергаторе-кавитаторе посредством организации соответствующей обратной связи и интенсивностью обработки. Аналогичным образом готовят водоугольную суспензию. Воду и уголь смешивают в заданном соотношении. Затем обработкой в диспергаторе-кавитаторе получают суспензию заданного качества. Композитное жидкое топливо получают предварительным смешением жидкого топлива, коллоидной смеси и водоугольной суспензии в собственной емкости с последующей обработкой в диспергаторе-кавитаторе аналогично приготовлению коллоидной смеси и угольной суспензии. Готовое КЖТ направляют в емкость, откуда насосом подают на горелочные устройства котлоагрегата.

/>Таким образом, в предложенной технологии за счет вариации компонентов, интенсивности обработки каждого компонента и композитного топлива в целом получают жидкое топлива заданного качества вне зависимости от изменяющихся свойств компонентов. Полученное топливо имеет глубоко диспергированный состав с размером твердой фракции 35 мкм, при этом твердые угольные частицы встроены в коллоидную структуру торфяного геля. Такое топливо может быть использовано как в качестве основного, так и растопочного. В то же время при незначительных изменениях в технологической линии приготовления топлива можно получать торфоугольный брикет или гранулы для слоевого сжигания (том числе и в кипящем слое.

Достоинства: низкая капиталоемкость, возможность поэтапного ввода в эксплуатацию, наличие сырьевой базы во всех регионах России, низкая удельная стоимость тонны КЖТ.


Заключение

Современные технологии уже далеко не современные, поскольку, с  момента появления в голове у изобретателя и до внедрения в массовое производство, существует обычно очень большой временной интервал. И то, что придумано в текущий момент, человечество увидит еще не скоро. Касаемо технологий, описанных в данном реферате можно сказать, что все они достойны внимания, в каждой из них есть как преимущества над базовыми схемами устройства котлоагрегатов, так и недостатки. Некоторые из них освоены в большей степени иностранными разработчиками и доведены до стандартов проектирования станций, а некоторые, как водоугольное топливо, остаются до сих пор невостребованными (проект углепровода Белово — НТЭЦ-5 на момент написания реферата был заморожен). Такой дисбаланс технологий в развитии связан со многими аспектами, в том числе и с большими инвестициями в их развитие, которые подвержены риску быть потрачены «впустую», если технология себя технически не оправдает или будет экономически нецелесообразна или нерентабельна. К примеру, ресурс плазмотрона достаточно невелик, зато затраты на его собственные нужды являются немалыми. Котел, модернизируемый вихревой топкой требует больших капиталовложений  и существенное изменение котла, а возможно еще и пылесистемы, как, например, требует обязательно технология термоподготовки топлива. Больше всего оказалась востребована технология изготовления котлов с кольцевой топкой, которая нашла применение и за рубежом. Данная технология, по мнению автора, является самой перспективной на данный момент.
Список литературы

1. Перспективные ТЭС. Особенности и результаты исследования: монография / П.А. Щинников. – Новосибирск: Изд-во НГТУ, 2007. – 284 с. – («Монографии НГТУ»).

2. Комплексные исследования ТЭС с новыми технологиями: Монография / П.А. Щинников, Г.В. Ноздренко, В.Г. Томило и др. – Новосибирск: Изд-во НГТУ,  2005. – 528 с. – («Монографии НГТУ»).

еще рефераты
Еще работы по технологии