Реферат: Невесомость



МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №4

имени И.С. Черных


РЕФЕРАТ

ПО ФИЗИКЕ НА ТЕМУ:

НЕВЕСОМОСТЬ


Работу выполнила:

Ученица средней школы №4

10 «Б» класса Хлусова Анастасия

Руководитель:

Лебедева Наталья Юрьевна

учитель физики


Томск 2009

Содержание


Введение

3

Глава 1. Вес тела и невесомость

4

1.1. Вес тела

4

1.2. Вес тела, движущегося с ускорением

5

1.3. Невесомость

8

1.4. Это интересно

12

1.4.1. Пламя в невесомости

12

1.4.2. Вибрация жидкости ускоряет ее кипение в невесомости

13

^ Глава 2. Человек и невесомость

15

2.1. Исследование проблем жизнедеятельности в космосе

17

2.2. Операция в невесомости

18

2.3. Применение космических разработок на Земле

18

Заключение

20

Литература

21

Приложение

22



Введение


Явление невесомости всегда вызывало у меня интерес. Еще бы, каждому человеку хочется летать, а невесомость – это что–то близкое к состоянию полета. До начала исследования мне было известно лишь то, что невесомость – состояние, которое наблюдается в космосе, на космическом корабле, при котором все предметы летают, а космонавты не могут стоять на ногах, как на Земле.

Невесомость является скорее проблемой для космонавтики, чем необычным явлением. Во время полета в космическом корабле могут возникнуть проблемы со здоровьем, а после приземления космонавтов необходимо заново учить ходить, стоять. Таким образом, очень важно знать, что такое невесомость и как она влияет на самочувствие людей, путешествующих в космическом пространстве. Как следствие, необходимо решить эту проблему, создавая программы по уменьшению риска неблагоприятного влияния невесомости на организм.

Цель моей работы – дать понятие невесомости в комплексном виде (т.е. рассмотреть его с разных сторон), отметить актуальность данного понятия не только в рамках изучения космического пространства, отрицательного воздействия на человека, но и в рамках возможности использования на Земле технологии, изобретенных для уменьшения этого воздействия; проведения некоторых технологических процессов, которые трудно или невозможно реализовать в земных условиях.

Задачи этого реферата:

Разобраться в механизме возникновения этого явления;

Описать этот механизм математически и физически;

Рассказать интересные факты про невесомость;

Понять, как состояние невесомости влияет на здоровье людей, находящихся в космическом корабле, на станции и т.д., то есть посмотреть на невесомость с биологической и медицинской точек зрения;

Обработать материал, оформить его согласно общепринятым правилам;

6) Создать презентацию на основе обработанного материала.

Источники, которыми я пользовалась в процессе написания реферата – это учебные пособия, энциклопедии, интернет.


Глава 1. Вес тела и невесомость

1.1. Вес тела


В технике и быту широко используется понятие веса тела.

Весом тела называют суммарную силу упругости, действующую при наличии силы тяжести на все опоры, подвесы.

Вес тела P, то есть сила, с которой тело действует на опору, и сила упругости FУ, с которой опора действует на тело (рис.1), в соответствии с третьим законом Ньютона равны по модулю и противоположны по направлению: P = -Fу

Если тело находится в покое на горизонтальной поверхности или равномерно движется и на него действуют только сила тяжести FТи сила упругости FУсо стороны опоры, то из равенства нулю векторной суммы этих сил следует равенство: FТ=- FУ.

Сопоставив выражения P = -Fуи FТ= - FУ,получим P = FТ,то есть вес P тела на неподвижной горизонтальной опоре равен силе тяжести FТ,но эти силы приложены к разным телам.

При ускоренном движении тела и опоры вес P будет отличаться от силы тяжести FТ.

По второму закону Ньютона при движении тела массой m под действием силы тяжести FТи силы упругости Fус ускорением a выполняется равенство FТ+FУ= ma.

Из уравнений P = -Fуи FТ+FУ= ma получаем: P = FТ– ma = mg – ma, или P = m( g – a ).

Рассмотрим случай движения лифта, когда ускорение a направлено вертикально вниз. Если координатную ось OY(рис.2) направить вертикально вниз, то векторы P, g и a оказываются параллельными оси OY, а их проекции положительными; тогда уравнение P = m(g – a) примет вид: Py=m(gУ – aУ).

Так как проекции положительны и параллельны координатной оси, их можно заменить модулями векторов: P = m(g – a).

Вес тела, у которого направление ускорения свободного и падения и ускорения совпадают, меньше веса покоящегося тела.[2]




1.2. Вес тела, движущегося с ускорением


Говоря  о весе тела в ускоренно движущемся лифте, рассматривается три случая (кроме случая покоя или равномерного движения):

Лифт движется с ускорением, направленным вверх (перегрузки, вес тела больше силы тяжести, P=mg+ma); 

Лифт движется с ускорением, направленным вниз (вес уменьшается, вес тела меньше силы тяжести, P=mg-ma); 

Лифт падает (невесомость, вес тела равен нулю, P=0).

Эти три случая не исчерпывают качественно всех ситуаций. Имеет смысл рассмотреть и 4-ый случай, чтобы анализ был завершённым. (Действительно, во втором случае подразумевается, что a < g. Третий случай есть частный для второго при a = g. Случай a > g остался нерассмотренным.) Для этого можно задать ученикам вопрос, который сначала вызывает у них удивление: “Как должен двигаться лифт, чтобы человек мог ходить по потолку?”  Ученики быстро “догадываются”, что лифт должен двигаться вниз с ускорением большим g. Действительно: при увеличении ускорения движения лифта вниз, в соответствие с формулой P=mg-ma, вес тела будет уменьшаться. Когда ускорение a станет равным g, вес станет равным нулю. Если и дальше увеличивать ускорение, то можно предположить, что вес тела изменит направление.




После этого можно изобразить на рисунке вектор веса тела:


Можно решить эту задачу и в обратной формулировке: “Каков будет вес тела в лифте, движущемся вниз с ускорением a > g ?”  Эта задача немного труднее, т.к. ученикам нужно преодолеть инерцию мышления и поменять местами “верх” и “низ”.

Может существовать возражение, что 4-ый случай не рассматривается в учебниках потому, что он не встречается на практике. Но и падение лифта встречается тоже только в задачах, но, тем не менее, его рассматривают, т.к. это удобно и полезно.

Движение с ускорением, направленным вниз или вверх, наблюдается не только в лифте или ракете, но и при движении самолёта, совершающего фигуры высшего пилотажа, а также при движении тела по выпуклому или вогнутому мосту. Рассмотренному 4-му случаю соответствует движение по “мёртвой петле”. В верхней её точке ускорение (центростремительное) направлено вниз, сила реакции опоры - вниз, вес тела – вверх.[2]

Представим ситуацию: космонавт вышел из корабля в космос и с помощью индивидуального ракетного двигателя совершает прогулку по окрестностям. Возвращаясь, он несколько передержал двигатель включенным, подошел к кораблю с избытком скорости и стукнулся о него коленом. Будет ли ему больно?

– Не будет: ведь в невесомости космонавт легче перышка, – такой можно услышать ответ.

Ответ неправилен. Когда вы на Земле падали с забора, вы тоже были в состоянии невесомости. Ибо при ударе о земную поверхность вы ощутили заметную перегрузку, тем бóльшую, чем тверже то место, на которое вы упали, и чем больше была ваша скорость в момент контакта с землей.

Невесомость и весомость не имеют отношения к удару. Здесь важны масса и скорость, а не вес.

И все-таки космонавту при ударе о корабль будет не так больно, как вам при ударе о землю (при прочих равных условиях: одинаковых массах, относительных скоростях и одинаковой твердости препятствий). Масса корабля намного меньше массы Земли. Поэтому при ударе о корабль заметная часть кинетической энергий космонавта будет превращена в кинетическую энергию корабля, а на долю деформаций останется меньше. Корабль приобретет дополнительную скорость, а болевое ощущение космонавта будет не таким сильным большим.[4]


1.3. Невесомость


Если тело вместе с опорой свободно падает, то a = g, то из формулы

P = m(g – a) следует, что P = 0.

Исчезновение веса при движении опоры с ускорением свободного падения только под действием силы тяжести называется невесомостью.[2]

Есть два вида невесомости.

Потеря веса, которая возникает на большом расстоянии от небесных тел из-за ослабления притяжения, называется статической невесомостью. А состояние, в котором находится человек во время полёта по орбите, – динамической невесомостью.

Проявляются они совершенно одинаково. Ощущения человека одни и те же. Но причины разные.

Космонавты в полётах имеют дело только с динамической невесомостью.

Выражение «динамическая невесомость» означает: «невесомость, возникающая при движении».

Мы чувствуем притяжение Земли только тогда, когда сопротивляемся ему. Только когда «отказываемся» падать. А как только мы «согласились» падать, ощущение тяжести мгновенно пропадает.

Представьте себе - вы гуляете с собакой, держа её на ремешке. Собака куда-то устремилась, натянула ремешок. Вы чувствуете натяжение ремешка – «притяжение» собаки, – только пока сопротивляетесь. А если вы побежите за собакой, ремешок провиснет и ощущение притяжения исчезнет.

Также получается и с притяжением Земли.

Летит самолёт. В кабине приготовились к прыжку два парашютиста. Земля тянет их вниз. А они пока сопротивляются. Упёрлись ногами в пол самолёта. Чувствуют притяжение Земли – подошвы их ног с силой прижаты к полу. Они ощущают свой вес. «Ремешок натянут».

Но вот они согласились следовать туда, куда тянет их Земля. Стали на край люка и прыгнули вниз. «Ремешок провис». Ощущение притяжения Земли сразу же пропало. Они стали невесомы.

Можно представить продолжение этой истории.

Одновременно с парашютистами с самолёта сбросили большой пустой ящик. И вот летят рядом, с одной скоростью, кувыркаясь в воздухе, два человека, не раскрывшие парашютов, и пустой ящик.

Один человек протянул руку, схватился за летящий рядом ящик, открыл в нём дверцу и втянулся внутрь.

Теперь из двух человек один летит снаружи ящика, а другой летит внутри ящика.

У них будут абсолютно разные ощущения.

Тот, который летит снаружи, видит и чувствует, что он стремительно летит вниз. В ушах у него свистит ветер. Вдали видна приближающаяся Земля.

А тот, который летит внутри ящика, закрыл дверцу и начал, отталкиваясь от стенок, «плавать» по ящику. Ему кажется, что ящик спокойно стоит на Земле, а он, потеряв вес, плавает по воздуху, как рыба в аквариуме.

Строго говоря, разницы между обоими парашютистами нет никакой. Оба с одной и той же скоростью камнем летят к Земле. Но один сказал бы: «Я лечу», а другой: «Я плаваю на месте». Всё дело в том, что один ориентируется по Земле, а другой – по ящику, в котором летит.

Вот именно так и возникает состояние динамической невесомости в кабине космического корабля.

В первый момент может показаться непонятным вот что. Казалось бы, космический корабль летит параллельно Земле, как самолёт. А в горизонтально летящем самолёте никакой невесомости не бывает. Но мы знаем, что космический корабль-спутник непрерывно падает. Он гораздо больше похож на сброшенный с самолёта ящик, чем на самолёт.

Динамическая невесомость возникает иногда и на Земле. Невесомы, например, пловцы-ныряльщики, летящие в воду с вышки. Невесомы в течение нескольких секунд лыжники во время прыжка с трамплина. Невесомы падающие камнем вниз парашютисты, пока они не раскрыли парашюты. Для тренировок космонавтов секунд на тридцать – сорок создают невесомость в самолёте. Для этого лётчик делает «горку». Он разгоняет самолёт, круто взмывает наклонно вверх и выключает мотор. Самолёт начинает полёт по инерции, как брошенный рукой камень. Сперва немного поднимается, потом описывает дугу, заворачивая вниз. Пикирует к Земле. Всё это время самолёт находится в состоянии свободного падения. И всё это время в его кабине царит настоящая невесомость. Затем лётчик снова включает мотор и осторожно выводит самолёт из пикирования на нормальный горизонтальный полёт. При включении мотора невесомость сразу исчезает. [9]

В состоянии невесомости на все частицы тела, находящегося в состоянии невесомости, силы тяжести действуют, но нет внешних сил, приложенных к поверхности тела (например, реакций опоры), которые могли бы вызвать взаимные давления частиц друг на друга. Подобное же явление наблюдается для тел, находящихся в искусственном спутнике Земли (или в космическом корабле); эти тела и все их частицы, получив вместе со спутником соответствующую начальную скорость, движутся под действием сил тяготения вдоль своих орбит с равными ускорениями, как свободные, не оказывая взаимных давлений друг на друга, то есть находятся в состоянии невесомости. Как и на тело в лифте, на них действует сила тяготения, но нет внешних сил, приложенных к поверхностям тел, которые могли бы вызвать взаимные давления тел или их частиц друг на друга.

Вообще тело под действием внешних сил будет в состоянии невесомости, если: а) действующие внешние силы являются только массовыми (силы тяготения); б) поле этих массовых сил локально однородно, то есть силы поля сообщают всем частицам тела в каждом его положении одинаковые по модулю и направлению ускорения; в) начальные скорости всех частиц тела по модулю и направлению одинаковы (тело движется поступательно). Таким образом, любое тело, размеры которого малы по сравнению с земным радиусом, совершающее свободное поступательное движение в поле тяготения Земли, будет, при отсутствии других внешних сил, находиться в состоянии невесомости. Аналогичным будет результат для движения в поле тяготения любых других небесных тел.

Вследствие значительного отличия условий невесомости от земных условий, в которых создаются и отлаживаются приборы и агрегаты искусственных спутников Земли, космических кораблей и их ракет – носителей, проблема невесомости занимает важное место среди других проблем космонавтики. Это наиболее существенно для систем, имеющих емкости, частично заполненные жидкостью. К ним относятся двигательные установки с ЖРД (жидкостно – реактивными двигателями), рассчитанные на многократное включение в условиях космического полета. В условиях невесомости жидкость может занимать произвольное положение в емкости, нарушая тем самым нормальное функционирование системы (например, подачу компонентов из топливных баков). Поэтому для обеспечения запуска жидкостных двигательных установок в условиях невесомости применяются: разделение жидкой и газообразной фаз в топливных баках с помощью эластичных разделителей; фиксация части жидкости у заборного устройства систем сеток (ракетная ступень «Аджена»); создание кратковременных перегрузок (искусственной «тяжести») перед включением основной двигательной установки с помощью вспомогательных ракетных двигателей и др. Использование специальных приемов необходимо и для разделения жидкой и газообразной фаз в условиях невесомости в ряде агрегатов системы жизнеобеспечения, в топливных элементах системы энергопитания (например, сбор конденсата системой пористых фитилей, отделение жидкой фазы с помощью центрифуги). Механизмы космических аппаратов (для открытия солнечных батарей, антенн, для стыковки и т.п.) рассчитываются на работу в условиях невесомости.

Невесомость может быть использована для осуществления некоторых технологических процессов, которые трудно или невозможно реализовать в земных условиях (например, получение композиционных материалов с однородной структурой во всем объеме, получение тел точной сферической формы из расплавленного материала за счет сил поверхностного натяжения и др.). Впервые эксперимент по сварке различных материалов в условиях невесомости вакуума был осуществлен при полете советского космического корабля «Союз – 6» (1969). Ряд технологических экспериментов (по сварке, исследованию течения и кристаллизации расплавленных материалов и т.п.) был проведен на американской орбитальной станции «Скайлэб» (1973).

Ученые проводят в космосе различные эксперименты, ставят опыты, но они слабо представляют себе конечный результат этих действий. Но если какой - либо эксперимент дал определенный результат, то еще долгое время приходится его проверять, чтобы в конечном итоге объяснить и применить полученные знания на практике. [1]

Ниже приведены описания некоторых экспериментов и интересных новостей про невесомость, над которыми еще предстоит работа.


^ 1.4. Это интересно


1.4.1. Пламя в невесомости

На Земле благодаря гравитации возникают конвекционные потоки, которые и определяют форму пламени. Они поднимают раскалённые частички сажи, которые излучают видимый свет. Благодаря этому мы видим пламя. В невесомости конвекционные потоки отсутствуют, частички сажи не поднимаются, а пламя свечи принимает сферическую форму. Так как материал свечи представляет собой смесь предельных углеводородов, они при сгорании выделяют водород, который горит голубым пламенем. Учёные стараются понять, как и почему огонь распространяется в невесомости. Изучение пламени в условиях невесомости необходимо для оценки пожароустойчивости космического корабля и при разработке специальных средств пожаротушения. Так можно обеспечить безопасность космонавтов и транспортных средств.[11]




^ 1.4.2. Вибрация жидкости ускоряет ее кипение в невесомости

В невесомости кипение становится гораздо более медленным процессом. Однако, как обнаружили французские физики, вибрация жидкости может привести к резкому ее вскипанию. Этот результат имеет значение для космической индустрии.

Каждый из нас не раз наблюдал фазовый переход жидкости в газ под действием высокой температуры, т. е., проще говоря, процесс кипения. Пузырьки пара, отрываясь от источника тепла, устремляются вверх, а на их место поступает новая порция жидкости. В результате кипение сопровождается активным перемешиванием жидкости, что многократно увеличивает скорость ее превращения в пар.

Ключевую роль в этом бурном процессе играет сила Архимеда, действующая на пузырек, которая, в свою очередь, существует благодаря силе тяжести. В условиях же невесомости нет веса, нет понятия «тяжелее» и «легче», и потому пузырьки нагретого пара не будут никуда всплывать. Вокруг нагревательного элемента образуется прослойка пара, которая препятствует передаче тепла всему объему жидкости. По этой причине кипение жидкостей в невесомости (но при том же давлении, а вовсе не в вакууме!) будет протекать совершенно иначе, чем на Земле. Детальное понимание этого процесса крайне важно для успешного функционирования космических аппаратов, несущих на борту тонны жидкого топлива.

Чтобы разобраться в этом процессе, очень важно понять, какие физические явления могут ускорять кипение в невесомости. В недавней статье французских физиков описываются результаты экспериментального исследования того, как высокочастотные вибрации влияют на скорость кипения.

В качестве рабочего вещества исследователи выбрали жидкий водород — самое легкое ракетное топливо. Состояние невесомости создавалось искусственно, с помощью сильного неоднородного магнитного поля, которое как раз компенсировало силу тяжести (про магнитную левитацию читайте в нашей заметке Магнитная сверхпроводимость: левитация в жидком кислороде). Температура и давление образца были подобраны так, чтобы фазовый переход происходил как можно медленнее и можно было бы заметить все его особенности.

Основной результат экспериментов французских физиков состоит в том, что в условиях невесомости вибрация ускоряет превращение жидкости в пар. Под действием вибрации внутри слегка перегретой жидкости появляется «объемная рябь»: сеть мелких, размером доли миллиметра, пузырьков пара в жидкости. Вначале эти пузырьки растут медленно, но спустя 1-2 секунды от начала воздействия весь процесс резко убыстряется: жидкость в буквальном смысле слова вскипает.

Как утверждают авторы, есть две причины такого поведения. Во-первых, пока пузырьки пара мелкие, вязкость жидкости как бы «держит» их на месте, не дает им быстро сближаться. Для крупных же пузырьков вязкость отходит на второй план, и их слияние и дальнейший рост становится интенсивнее. Вторая причина кроется в самой сути математических законов, управляющих движением жидкостей. Эти законы нелинейны, а значит, внешние вибрации не только заставляют жидкость «мелко трястись», но и порождают в ней крупномасштабные течения. Именно эти течения, разогнавшись, эффективно перемешивают рабочий объем и приводят к убыстрению процесса.

Авторы работы подчеркивают, что обнаруженное ими явление имеет не только прикладной, но и чисто научный интерес. В их экспериментах сложные гидродинамические течения, сопровождающие эволюцию сети пузырьков, идут параллельно с самим фазовым переходом. Оба этих явления поддерживают и усиливают друг друга, приводя к крайней нестабильности жидкости даже в невесомости.[8]



Кипение воды на Земле и в условиях невесомости (изображение с сайта nasa.gov)


Итак, разобравшись в причинах возникновения невесомости и в особенностях этого явления можно переходить к вопросу о влиянии ее на организм человека.


^ Глава 2. Человек и невесомость

          

Мы привыкли к собственной тяжести. Привыкли к тому, что все окружающие нас предметы имеют вес. Иного мы и не представляем. Не только наша жизнь прошла в условиях весомости. Вся история жизни на Земле протекала в этих же условиях. Земное притяжение за миллионы лет ни разу не исчезало. Поэтому все организмы, живущие на нашей планете, уже давно приспособились к тому, чтобы выдерживать свой собственный вес.

Уже в самые давние времена в организме животных образовались кости, ставшие подпорками для их тела. Без костей животные под действием земного притяжения «расползлись» бы по земле, как мягкая медуза, вынутая из воды на берег.

Все наши мышцы приспособились за миллионы лет к тому, чтобы двигать наше тело, преодолевая притяжение Земли.

 И внутри нашего тела всё приспособлено к условиям весомости. У сердца мощная мускулатура, рассчитанная на то, чтобы непрерывно перекачивать несколько килограммов крови. И если вниз, в ноги, она ещё течёт легко, то наверх, в голову, её надо подавать с силой. Все наши внутренние органы подвешены на прочных связках. Если бы их не было, внутренности «скатились» бы вниз, сбились там в кучу.

  Из-за постоянной весомости у нас выработался специальный орган, вестибулярный аппарат, расположенный в глубине головы, за ухом. Он позволяет нам чувствовать, в какой стороне от нас Земля, где находится «верх» и где «низ».

  Вестибулярный аппарат – это небольшие полости, заполненные жидкостью. В них лежат крохотные камушки. Когда человек стоит прямо на ногах, камушки лежат на дне полости. Если человек ляжет, камушки перекатятся и лягут на боковую стенку. Мозг человека это почувствует. И человек, даже с закрытыми глазами, сразу скажет, где низ.

  Итак, в человеке всё приспособлено к условиям, в которых он живёт на поверхности планеты Земля.

А каковы же условия жизни человека в таком своеобразном состоянии, как невесомость?

Своеобразие невесомости особенно существенно учитывать при полете обитаемых космических кораблей: условия жизни человека в состоянии невесомости резко отличаются от привычных земных, что вызывает изменение ряда его жизненных функций. Так, невесомость ставит центральную нервную систему и рецепторы многих анализаторных систем (вестибулярного аппарата, мышечно – суставного аппарата, кровеносных сосудов) в необычные условия функционирования. Поэтому невесомость рассматривают как специфический интегральный раздражитель, действующий на организм человека и животного в течение всего орбитального полета. Ответом на этот раздражитель являются приспособительные процессы в физиологических системах; степень их проявления зависит от продолжительности невесомости и в значительно меньшей степени от индивидуальных особенностей организма.

Неблагоприятное влияние невесомости на организм человека в полете можно предупредить или ограничить с помощью различных средств и методов (мышечная тренировка, электростимуляция мышц, отрицательное давление, приложенное к нижней половине тела, фармакологические и др. средства). В полете продолжительностью около 2 месяцев (второй экипаж на американской станции «Скайлэб», 1973) высокий профилактический эффект был достигнут главным образом благодаря физической тренировке космонавтов. Работа высокой интенсивности, вызывавшая учащение пульса до 150 – 170 ударов в минуту, выполнялась на велоэргометре в течение 1 часа в сутки. Восстановление функции кровообращения и дыхания наступало через 5 суток после приземления. Изменение обмена веществ, стато – кинетические и вестибулярные расстройства были выражены слабо.

Эффективным средством, вероятно, явится создание на борту космического аппарата искусственной «тяжести», которую можно получить, например, выполняя станцию в виде большого вращающегося (то есть движущегося не поступательно) колеса и располагая рабочие помещения на его «ободе». Вследствие вращения «обода» тела в нем будут прижиматься к его поверхности, которая будет играть роль «пола», а реакция «пола», приложенная к поверхностям тел, и будет создавать искусственную «тяжесть». Создание на космических кораблях искусственной «тяжести» может обеспечить предупреждение неблагоприятного влияния невесомости на организм животных и человека.

Для решения ряда теоретических и практических задач космической медицины широко применяются лабораторные методы моделирования невесомости, в том числе ограничение мышечной активности, лишение человека привычной опоры по вертикальной оси тела, снижение гидростатического давления крови, что достигается пребыванием человека в горизонтальном положении или под углом (голова ниже ног), длительным непрерывным постельным режимом или погружением человека на несколько часов или суток в жидкую (так называемую иммерсионную) среду.[1]

Условия невесомости нарушают способность правильно оценивать размеры объектов и расстояния до них, что мешает космонавтам ориентироваться в окружающем пространстве и может приводить к авариям во время космических полетов, говорится в статье французских ученых, опубликованной в журнале Acta Astronautica. К настоящему времени накоплено множество свидетельств того, что ошибки космонавтов при определении расстояний происходят не случайно. Часто далекие объекты кажутся им расположенными ближе, чем они есть на самом деле. Ученые из французского Национального центра научных исследований провели экспериментальную проверку способности оценивать расстояния в условиях искусственно созданной невесомости при полете самолета по параболе. В этом случае невесомость длится очень короткий период - около 20 секунд. Добровольцам с помощью специальных очков показывали незавершенное изображение куба и просили дорисовать правильную геометрическую фигуру. В условиях обычной гравитации испытуемые рисовали все стороны равными, но во время невесомости им не удавалось правильно выполнить тест. По словам ученых, этот эксперимент показывает, что именно невесомость, а не длительную адаптацию к ней, следует рассматривать в качестве важного фактора, искажающего восприятие. [12]


^ 2.1. Исследование проблем жизнедеятельности в космосе

В книге «Орбитальная станция «Скайлэб», написанной еще в 1977 году американскими ведущими специалистами США по космонавтике профессором Э. Стулингером и доктором Л. Бэлью - научными руководителями осуществленной НАСА программы «Скайлэб» рассказывается об исследованиях проводившихся на орбитальной станции

влияния, оказываемого окружающим космическим пространством, на возможности членов экипажа. Программа медико-биологических исследований охватывала следующие четыре области: медицинские эксперименты предусматривали проведение глубоких исследований тех физиологических эффектов и периода их действия, которые наблюдались во время предшествующих полетов.

Биологические эксперименты предусматривали изучение фундаментальных биологических процессов, на которые могут влиять условия невесомости.

Биотехнические эксперименты были направлены на развитие эффективности систем человек-машина при работе в космосе и на улучшение техники использования биоаппаратуры. Вот некоторые темы исследования:

исследование солевого баланса;

биологические исследования жидкостей тела; 

исследование изменений костной ткани;

создание отрицательного давления на нижнюю часть тела в полете;

получение векторных кардиограмм;

цитогенетические исследования крови;

исследования иммунитета;

исследования изменений объема крови и продолжительности жизни красных кровяных телец;

исследования метаболизма красных кровяных телец;

изучение специальных гематологических эффектов;

изучение цикла сна и бодрствования в условиях космического полета; 

киносъемка космонавтов во время выполнения некоторых рабочих операций;

измерения скорости обмена веществ; 

измерение массы тела космонавта в условиях космического полета;

исследования влияния невесомости на живые клетки и ткани человека. (Приложение 1) [6]

Большой научно-практический материал накоплен и российскими учеными и космонавтами.

А возможно ли оперировать людей в условиях невесомости? На первый взгляд этот вопрос кажется невероятным, но, на самом деле, в нашем мире возможно многое!

Это показало, что ученые смогли перейти от экспериментов, которые часто имели какие – либо недостатки и требовали доработки, к настоящим открытиям и смогли на практике доказать, что в невесомости возможно оперировать человека!


2.2. Операция в космосе

Французские медики во главе с профессором Домиником Мартеном из Бордо провели первую в мире хирургическую операцию в условиях невесомости. Эксперимент проводился на борту авиалайнера А-300 в специально оборудованном модуле. В его проведении участвовало трое хирургов и двое анестезиологов, которым предстояло в условиях удалить жировую опухоль на руке у пациента - добровольца – 46 - летнего Филиппа Саншо.

Как сказал профессор Мартен, задача медиков заключалась не в том, чтобы продемонстрировать технические достижения, а в том, чтобы проверить осуществимость операции в условиях невесомости. "Мы смоделировали ситуацию, соответствующую условиям космоса, и теперь знаем, что человек может быть без серьезных осложнений прооперирован в космическом пространстве", - добавил хирург. По его словам, операция по удалению опухоли заняла в общей сложности менее 10 минут. Режим трехчасового полета на борту А-300 был составлен таким образом, что за это время 32 раза создавалось состояние невесомости, при этом каждая ее фаза длилась около 20 секунд. "Если бы мы непрерывно находились в состоянии невесомости на протяжении двух часов, то смогли бы прооперировать аппендицит", - сказал профессор Мартен.

Следующим этапом эксперимента, который планируется осуществить примерно через год, станет хирургическая операция, которую должен будет провести медицинский робот, управляемый по командам с наземной базы.[10]


^ 2.3. Применение космических разработок на Земле

Мы все меньше двигаемся и все больше походим на космонавтов,
еще рефераты
Еще работы по разное