Реферат: Жи́дкость одно из агрегатных состояний вещества


Жидкость.


Жи́дкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём. Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела). Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления. Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).


По химическому составу различают однокомпонентные, или чистые. По физической природе жидкости делятся на нормальные (обычные), жидкие кристаллы с сильно выраженной анизотропией (зависимостью свойств от направления) и квантовые жидкости — жидкие 4He, 3He и их смеси — со специфическими квантовыми свойствами при очень низких температурах. Нормальные чистые жидкости имеют только одну жидкую фазу (т. е. существует один единственный вид каждой нормальной жидкости). Гелий 4He может находиться в двух жидких фазах — нормальной и сверхтекучей, а жидкокристаллические вещества — в нормальной и одной или даже двух анизотропных фазах.


^ Классификация жидкостей


Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.


1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).


2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий азот). Такие молекулы обладают квадрупольным моментом.


3. Жидкие непереходные металлы (натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.


4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).


5. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).


6. Жидкости, состоящие из больших молекул, для которых существенно внутренние степени свободы.


Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.


^ Теория жидкостей.


Основой современных молекулярных теорий жидкого состояния послужило экспериментальное обнаружение в жидкости ближнего порядка — согласования (корреляции) во взаимных положениях и ориентациях близко расположенных групп, состоящих из 2, 3 и большего числа молекул. Эти статистической корреляции, определяющие молекулярную структуру жидкости, простираются на область протяжённостью порядка несколько межатомных расстояний и быстро исчезают для далеко расположенных друг от друга частиц (отсутствие дальнего порядка). Структурные исследования реальных жидкостей, позволившие установить эту особенность жидкого состояния, производятся методами рентгеновского структурного анализа и нейтронографии.


По структуре и способам их описания, жидкости делят на простые и сложные. К первому сравнительно малочисленному классу относят однокомпонентные атомарные жидкости. Для описания свойств таких жидкостей достаточно указать лишь взаимное расположение атомов. К этому классу жидкостей относятся жидкие чистые металлы, сжиженные инертные газы и (с некоторыми оговорками) жидкости с малоатомными симметричными молекулами, например CCl4. Для простых жидкостей результаты рентгено-структурного или нейтронографического анализа могут быть выражены с помощью т. н. радиальной функции распределения g (r) (см. рис.).


Вид радиальной функции распределения g(r) для жидкого натрия (в условных единицах): а — распределение частиц в зависимости от расстояния r; б — число частиц в тонком сферическом слое как функция расстояния r. Пунктиром показано распределение молекул при отсутствии упорядоченности в их расположении (газ). Вертикальные отрезки — положения атомов в кристаллическом натрии, числа при них — количество атомов в соответствующих координационных сферах (т. н. координационные числа).


Эта функция характеризует распределение частиц вблизи произвольно выбранной частицы, т. к. значения g (r) пропорциональны вероятности нахождения двух атомов (молекул) на заданном расстоянии r друг от друга. Ход кривой g (r) наглядно показывает существование определённой упорядоченности в простой жидкости — в ближайшее окружение каждой частицы входит в среднем определённое число частиц. Для каждой жидкости детали функции g (r) незначительно меняются с изменением температуры и давления. Расстояние до первого пика определяет среднее межатомное расстояние, а по площади под первым пиком можно восстановить среднее число соседей (среднее координационное число) атома в жидкости. В большинстве случаев эти характеристики вблизи линии плавления оказываются близкими к кратчайшему межатомному расстоянию и координационному числу в соответствующем кристалле. Однако, в отличие от кристалла, истинное число соседей у частицы и истинное межатомное расстояние в жидкостях являются не постоянными числами, а случайными величинами, и по графику g (r) устанавливаются лишь их средние значения.

При сильном нагревании жидкости и приближении к газовому состоянию ход функции g (r) постепенно сглаживается соответственно уменьшению степени ближнего порядка. В разреженном газе g (r). Число ближайших соседей у всех атомов практически одинаково, но расположение атомов по мере их удаления от какой-либо выделенной позиции становится все более и более хаотичным. Таким образом, упорядоченность существует лишь на малых расстояниях, отсюда и название: ближний порядок. Адекватное математическое описание структуры жидкости может быть дано лишь с помощью статистической физики. Например, если жидкость состоит из одинаковых сферических молекул, то ее структуру можно описать радиальной функцией распределения g(r), которая дает вероятность обнаружения какой-либо молекулы на расстоянии r от данной, выбранной в качестве точки отсчета. Экспериментально эту функцию можно найти, исследуя дифракцию рентгеновских лучей или нейтронов, а с появлением быстродействующих компьютеров ее стали вычислять методом компьютерного моделирования, основываясь на имеющихся данных о природе сил, действующих между молекулами, или на предположениях об этих силах, а также на законах механики Ньютона. Сравнивая радиальные функции распределения, полученные теоретически и экспериментально, можно проверить правильность предположений о природе межмолекулярных сил.


Наиболее характерным свойством жидкостей, отличающим их от твердых тел, является низкая вязкость (высокая текучесть). Благодаря ей они принимают форму сосуда, в который налиты. На молекулярном уровне высокая текучесть означает относительно большую свободу частиц жидкости. В этом жидкости напоминают газы, хотя силы межмолекулярного взаимодействия жидкостей больше, молекулы расположены теснее и более ограничены в своем движении.


К сказанному можно подойти и иначе — с точки зрения представления о дальнем и ближнем порядке. Дальний порядок существует в кристаллических твердых телах, атомы которых расположены строго упорядоченно, образуя трехмерные структуры, которые можно получить многократным повторением элементарной ячейки. Пример двумерного дальнего порядка представлен на рис. 1,а. В жидкости и стекле дальний порядок отсутствует. Это, однако, не означает, что они вообще не упорядочены. Для жидкости характерна картина, подобная изображенной на рис. 1,б.




Рис. 1. ДАЛЬНИЙ И БЛИЖНИЙ ПОРЯДОК. а - двумерная модель твердого тела, иллюстрирующая наличие дальнего порядка; б - двумерная модель жидкости, иллюстрирующая наличие только ближнего порядка.


В органических веществах, молекулы которых имеют удлиненную форму, в том или ином интервале температур иногда обнаруживаются области жидкой фазы с дальним ориентационным порядком, который проявляется в тенденции к параллельному выстраиванию длинных осей молекул. При этом ориентационная упорядоченность может сопровождаться координационной упорядоченностью центров молекул. Жидкие фазы такого типа обычно называют жидкими кристаллами; для понимания их структурных свойств тоже весьма полезно компьютерное моделирование.


В газах никакой упорядоченности в расположении молекул нет. Таким образом, жидкости занимают промежуточное положение между кристаллическими твердыми телами и газами, т. е. между полностью упорядоченными и полностью неупорядоченными молекулярными системами. Именно поэтому теория жидкостей оказывается столь сложной. Ниже мы рассмотрим связь между твердыми телами, жидкостями и газами, а также между различными свойствами жидкостей, пользуясь простыми молекулярными моделями.


Жидкость, газ и межмолекулярные силы.


В 1 см3 газа при температуре 0° С и нормальном давлении содержится примерно 2,7Ч1019 молекул, так что среднее расстояние между ними составляет около 30Ч10-8 см, или 30 Å. Поскольку диаметр самих молекул всего лишь несколько ангстрем, логично предположить, что взаимодействие между молекулами газа пренебрежимо мало всегда, кроме моментов их столкновений. Таким образом, мы приходим к модели газа, в которой молекулы представляются движущимися независимо друг от друга шариками, сталкивающимися друг с другом и со стенками сосуда, в который газ заключен. При температуре 0° С скорость молекул составляет несколько сотен метров в секунду, и их столкновения со стенками сосуда создают ощутимое давление. Более детальное рассмотрение указанной модели дает соотношение между давлением P, объемом V и термодинамической температурой T (T = °С + 273)

^ PV/T = const (для данного количества газа). - (1)

Это соотношение — так называемое уравнение состояния идеального газа — представляет собой обобщенную запись законов Бойля — Мариотта, Гей-Люссака и Шарля, и поведение большинства газов описывается им с хорошей точностью. Уравнение (1) выполнялось бы всегда, если бы газ оставался газом независимо от понижения температуры или повышения давления. Однако хорошо известно, что все газы можно перевести в жидкое состояние, если достаточно сильно сжать их или охладить. Для каждого газа есть так называемая критическая температура Tc, ниже которой он всегда может быть ожижен путем повышения давления; выше Tc газ не может быть ожижен ни при каких условиях. Это означает, что модель независимо движущихся молекул в условиях, когда температура выше Tc, является лишь приближенной, а ниже Tc при высоких давлениях и плотностях она вообще неверна. Существование жидкого состояния ниже Tc наводит на мысль, что между молекулами действуют силы притяжения, поскольку иначе вообще нельзя понять, почему они остаются вблизи друг от друга. Однако помимо притяжения молекулы испытывают и взаимное отталкивание — мы убеждаемся в этом, когда пытаемся уменьшить объем жидкости (или твердого тела). Силы притяжения действуют на больших расстояниях, чем силы отталкивания, но и те и другие имеют электростатическую природу.


Если ввести в модель идеального газа поправки на сцепление молекул и их объем, то получается уравнение, вообще говоря, отличное от (1). Одно из таких уравнений, выведенное Я.Ван-дер-Ваальсом, имеет вид

(P + a/V2) (V - b)/T = const. - (2)

Здесь a и b — константы, характерные для данного газа. Это уравнение также предсказывает существование критической температуры Tc и качественно описывает наблюдаемый переход между газообразной и жидкой фазами.


Рассмотрим некоторые практические следствия из уравнения (2). На рис. 2 представлен график зависимости давления газа от объема.




Рис. 2. ИЗОТЕРМА ABCD иллюстрирует связь между давлением газа и его объемом при постоянной температуре.


Пусть некоторое количество газа занимает объем V1 при температуре T1 и давлении P1. При уменьшении объема давление возрастает и состояние газа изменяется: из точки A он переходит в точку B. Здесь газ начинает конденсироваться, причем дальнейшее уменьшение объема уже не приводит к изменению давления. При движении вдоль прямой BC количество жидкости возрастает до тех пор, пока в точке C газ не будет ожижен полностью. Постоянное давление, соответствующее этому процессу, называется давлением насыщенного пара при данной температуре T1. Во всех точках отрезка BC между жидкостью и газом существует равновесие (термодинамическое). Это означает, что число молекул, испаряющихся с поверхности жидкости в 1 с, в точности равно числу молекул, конденсирующихся из пара в жидкость. Для дальнейшего уменьшения объема необходимо создать очень высокое давление, чтобы преодолеть силы взаимного отталкивания молекул жидкости. Этой ситуации отвечает вертикальная прямая CD. Кривая ABCD называется изотермой, поскольку всем ее точкам соответствует одна и та же температура. Если такой же опыт проводить при более высокой температуре, то в соответствии с уравнением Ван-дер-Ваальса мы получим изотерму с таким же ходом, лишь отрезок BC станет короче. И наконец, при критической температуре Tc этот отрезок вообще стянется в точку с координатами Tc и Pc. В этой точке жидкость и газ неразличимы. При температурах, превышающих Tc, уравнение Ван-дер-Ваальса (2) переходит в уравнение (1).


Представим себе каплю ртути. Мы можем слегка расплющить ее пальцем, но стоит убрать палец, и капля снова соберется в шарик. Она ведет себя так, как будто ее обтягивает эластичная пленка. Это и есть проявление эффекта поверхностного натяжения. Его природа станет ясна, если мы обратимся к рис. 3.



Рис. 3. СИЛЫ, ДЕЙСТВУЮЩИЕ НА МОЛЕКУЛУ в объеме жидкости (A) и вблизи ее поверхности (В).


Здесь A и B — две молекулы жидкости, первая в объеме, вторая на поверхности. В обоих случаях на них действуют силы притяжения со стороны других молекул, но лишь тех, которые находятся внутри сферы диаметром в несколько ангстрем, поскольку эти силы быстро убывают с расстоянием. Для молекулы A такая сфера лежит полностью внутри жидкости, поэтому равнодействующая всех сил равна нулю. Молекула B, находящаяся на поверхности, будет втягиваться внутрь жидкости, поскольку на нее действуют только силы притяжения со стороны молекул, находящихся в нижней полусфере. Такие же силы, перпендикулярные поверхности и направленные внутрь жидкости, действуют на все молекулы вблизи поверхности; они и создают поверхностное натяжение.


Поверхностное натяжение S количественно определяется как сила, действующая на единицу длины линии на поверхности жидкости. Рассмотрим мыльную пленку, натянутую на вертикальную рамку из двух тонких проволочек TUV и PQ (рис. 4).




Рис. 4. ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ S мыльной пленки в проволочной рамке TUV удерживает в равновесии свободно движущуюся проволочку PQ.


Проволочка PQ не закреплена и может свободно передвигаться. Она будет смещаться вниз под действием силы тяжести, пока последняя не уравновесится силой, обусловленной поверхностным натяжением. Поскольку пленка имеет две поверхности, на проволочку будет действовать сила 2SL, где L — длина участка проволочки PQ, контактирующего с пленкой.


Из-за наличия поверхностного натяжения любое увеличение площади поверхности жидкости сопряжено с затратами энергии. Именно поэтому небольшие капли жидкости принимают сферическую форму: отношение площади их поверхности к объему становится минимальным, а вслед за этим минимизируется и потенциальная энергия. Большие капли деформируются под действием силы тяжести.


Капиллярные явления. Капля воды на чистой стеклянной пластинке теряет свою сферическую форму и растекается, образуя тонкую пленку. Происходит это потому, что силы сцепления между молекулами воды и стекла превышают аналогичные силы между молекулами воды — вода смачивает стекло. Капля ртути на той же пластинке остается сферической: силы сцепления между молекулами ртути больше сил сцепления между молекулами ртути и стекла — ртуть стекло не смачивает. Именно этим объясняются так называемые капиллярные явления, наблюдаемые в тонкой стеклянной трубке-капилляре (рис. 5).




Рис. 5. СМАЧИВАНИЕ стенок стеклянного капилляра водой проявляется в подъеме жидкости и вогнутости мениска; ртуть не смачивает стенки капилляра и у нее мениск выпуклый и уровень жидкости в капилляре ниже, чем в сосуде.

Если опустить капилляр в сосуд с водой, то вода поднимется по нему выше уровня в сосуде, причем ее поверхность (мениск) будет иметь вогнутую форму. Уровень ртути в таком же капилляре, напротив, будет ниже уровня в самом сосуде, а мениск будет выпуклым. Поскольку сцепление между молекулами воды и стекла сильнее, чем между самими молекулами воды, вода как бы "взбирается" по стенкам капилляра, пока давление ее столбика в капилляре не уравновесится давлением, обусловленным межмолекулярными силами. Вогнутый мениск образуется потому, что на молекулы воды вблизи стенок капилляра действует отличная от нуля сила, направленная к стенке. Для ртути наблюдается обратная картина.


Кипение жидкостей.

При кипении жидкости в открытом сосуде давление внутри пузырьков пара, образующихся в жидкости, должно быть по меньшей мере равно атмосферному давлению — иначе пузырьки просто будут схлопываться. Следовательно, в точке кипения давление паров жидкости равно атмосферному. На достаточно большой высоте температура кипения жидкости ниже, чем на уровне моря, поскольку барометрическое давление понижается с высотой. Так, температура кипения воды на высоте 4000 м составляет лишь около 85°С, тогда как на уровне моря она равна 100° С.


Кипение — это интенсивное испарение жидкости, происходящее не только с поверхности, но и во всем ее объеме, внутрь образующихся пузырьков пара. Чтобы перейти из жидкости в пар, молекулы должны приобрести энергию, необходимую для преодоления сил притяжения, удерживающих их в жидкости. Например, для испарения 1 г воды при температуре 100° С и давлении, соответствующем атмосферному давлению на уровне моря, требуется затратить 2258 Дж, из которых 1880 идут на отделение молекул от жидкости, а остальные — на работу по увеличению объема, занимаемого системой, против сил атмосферного давления (1 г водяных паров при 100° С и нормальном давлении занимает объем 1,673 см3, тогда как 1 г воды при тех же условиях — лишь 1,04 см3).


Температура кипения раствора нелетучего вещества, как правило, выше, чем чистого растворителя. Поскольку жидкость закипает, когда давление ее паров становится равным атмосферному, указанная закономерность означает, что давление паров раствора нелетучего вещества при данной температуре ниже, чем у чистого растворителя.


Затвердевание жидкостей.

Обычно при затвердевании жидкостей их объем несколько уменьшается (примерно на 10%), хотя существуют и исключения из этого правила. Например, вода, галлий и висмут при затвердевании расширяются, так что затвердевшее вещество плавает на поверхности жидкости. Поведение жидкостей вблизи температуры затвердевания может обнаруживать и другие аномалии, например при повышении температуры в интервале от 0 до 4° С вода сжимается. Чтобы объяснить эти экспериментальные факты, рассмотрим сначала переход от жидкого состояния к твердому для "нормальных" веществ, например алюминия. Как показывает рентгеноструктурный анализ, алюминий кристаллизуется с образованием гранецентрированной кубической решетки (рис. 6), в которой каждый атом окружен двенадцатью ближайшими соседями, находящимися от него на расстоянии 2,86 Å (2,86Ч10-8 см).




Рис. 6. ГРАНЕЦЕНТРИРОВАННАЯ КУБИЧЕСКАЯ СТРУКТУРА кристаллов алюминия.

Если атомы считать сферами, то такое расположение соответствует наиболее плотной их упаковке ("плотноупакованная" структура). В алюминии, находящемся в жидком состоянии, дальний порядок отсутствует, однако какой-то ближний порядок все же остается. По данным рентгеновской дифракции каждый атом в нем окружен 10-11 ближайшими соседями, расположенными на расстоянии 2,96 Å от него, т. е. структура жидкого алюминия вблизи температуры затвердевания сходна со структурой твердого алюминия, но несколько более "рыхлая". Для воды, галлия и висмута наблюдается обратная картина: вблизи температуры затвердевания более "рыхлой" является их структура не в жидком, а в твердом состоянии. Ответ на вопрос о причинах такой аномалии следует искать в особенностях строения их молекул и связей между ними в разных агрегатных состояниях. Рассмотрим, например, воду и лед. Оба они построены из одних и тех же молекул, которые состоят из дважды ионизованных отрицательных ионов кислорода (О2-) и двух однократно ионизованных положительных ионов водорода (H+). В молекуле воды эти три иона образуют треугольник с двумя протонами в основании и кислородом в вершине (соответственно два малых кружка и один большой на рис. 7); угол между связями O-H равен 104°. В структуре льда молекулы H2O расположены так, что каждый атом кислорода находится в окружении четырех водородных атомов, располагающихся в вершинах тетраэдра.




Рис. 7. В МОЛЕКУЛАХ ЛЬДА каждый атом кислорода окружен четырьмя атомами водорода, занимающими вершины тетраэдра; треугольная структура молекул жидкой воды обеспечивает более плотную упаковку.


Это обеспечивает максимальный выигрыш в энергии благодаря притяжению между положительными и отрицательными ионами, но структура становится значительно более "рыхлой". При плавлении льда такая довольно неэкономичная упаковка молекул H2O постепенно сменяется более плотной, и в интервале от 0 до 4° С объем вещества постепенно уменьшается. Рыхлая структура твердых галлия и висмута тоже обусловливается особенностями взаимодействий между атомами, однако характер этих связей гораздо сложнее, чем у льда.


Растворение жидкостей. Хорошо известно, что вода растворяет спирт в любом количестве, тогда как с ртутью и нефтью она вообще не смешивается. Точно так же бензол растворяет углеводороды, но не растворяет воду. В чем причина этого феномена? Здесь можно дать такой общий ответ: жидкости смешиваются, если сходны их электронные структуры, а различия в электронной структуре затрудняют смешение. Чтобы пояснить, что мы понимаем под "электронной структурой", вновь рассмотрим воду. При образовании молекулы воды происходит перераспределение заряда между составляющими ее атомами: атомы водорода отдают свои валентные электроны, а атом кислорода принимает их. Таким образом, молекула воды имеет ненулевой электрический дипольный момент, т. е. является полярной. Этим объясняется, в частности, то, что вода обладает очень большой диэлектрической проницаемостью и соли хорошо растворяются в ней, диссоциируя на ионы. Диполь-дипольное взаимодействие удерживает молекулы воды вместе, вследствие чего повышается ее температура кипения. Другой пример полярной жидкости — спирт C2H5OH; он легко смешивается с водой, поскольку дипольный момент его молекул сходен с дипольным моментом молекул воды.


Наряду с полярными жидкостями, молекулы которых в значительной степени связаны между собой, существуют и неполярные с более слабыми межмолекулярными связями. Примером таких жидкостей могут служить углеводороды — бензол, нафталин и др. Молекулы этих жидкостей построены из атомов углерода и водорода, которые обобществляют свои валентные электроны вместо того, чтобы отдавать или присоединять их. Об относительной слабости связей между молекулами углеводородов свидетельствует низкая температура их кипения. Между жидкостями с четко выраженными полярными свойствами (вода) и абсолютно неполярными (углеводороды) находится целый спектр классов жидкостей, так что не всегда можно заранее сказать, будут две данные жидкости смешиваться или нет. Но в большинстве случаев выполняется правило, сформулированное в начале раздела.


Кроме электронной структуры, смешиваемость жидкостей может существенным образом зависеть от размера молекул, а также от температуры. Например, никотин смешивается с водой в любой пропорции ниже 60°С и выше 208° С; при промежуточных же температурах взаимная растворимость никотина и воды весьма ограничена.


Осмос.

В 1748 Ж. Нолле обнаружил, что некоторые растительные клетки в концентрированном солевом растворе сжимаются — вода уходит из них через клеточную мембрану. Если те же клетки перенести затем в воду, то они разбухают и восстанавливают свой размер. Такое перемещение вещества (диффузия) через полупроницаемую перегородку, разделяющую раствор и чистый растворитель или два раствора разной концентрации, называется осмосом. Это явление можно объяснить тем, что молекулы растворителя, как правило, меньше молекул растворенного вещества, а потому легче проходят сквозь поры в перегородке. Поскольку в разбавленном растворе (или чистом растворителе) число молекул растворителя больше, чем в концентрированном, происходит диффузионный перенос этих молекул в сторону последнего.


Жидкости и твердые тела. Ранее, было сказано о взаимоотношениях жидкостей и их паров вблизи критической температуры Tc. Аналогичные взаимоотношения существуют между жидкостями и твердыми телами — по крайней мере вблизи температуры плавления Tm.


Обычно при расплавлении твердого тела его объем увеличивается примерно на 10%, т. е. среднее расстояние между соседними молекулами в твердом и жидком состояниях почти одинаково. Сцепление между атомами или молекулами в твердом и жидком состояниях различается не очень сильно, и пластичность твердых тел можно считать аналогом текучести жидкостей. Таким образом, по своим физическим свойствам твердые тела и жидкости различаются не столь радикально, как это кажется. Соответственно существуют два типа теорий жидкого состояния: одни опираются на представления современной теории твердого тела, а другие — на представления, заимствованные из теории газов. Теории первого типа более адекватны вблизи точки плавления Tm, а второго — вблизи критической точки Tc.


Жидкие металлы.

Многие физические свойства твердых металлов мало меняются при плавлении. В связи с этим разрабатываются более общие теории, в которых свойства жидких и твердых металлов рассматриваются с единых позиций. В этих теориях важную роль играет структурный фактор, определяемый взаимным расположением атомов. Оказывается, что вследствие довольно сильных колебаний атомов твердого тела при повышенных температурах структурный фактор твердого тела вблизи точки плавления не очень сильно отличается от такового для жидкости. Металлы с низкой температурой плавления, например натрий, применяются в качестве охлаждающих теплоносителей в ядерных реакторах АЭС.


Алюминий.


Алюми́ний (лат. Аluminium) — химический элемент под номером 13 в таблице Менделеева. Наиболее распространённый металл и третий по распространённости химический элемент (после O, Si) в земной коре. Простое вещество алюминий (CAS-номер: 7429-90-5) — лёгкий, немагнитный серебристо-белый металл, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой теплопроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.


^ Физические свойства


Металл серебристо-белого цвета, легкий, плотность 2,7 г/см³, температура плавления у технического 658 °C, у алюминия высокой чистоты 660 °C, температура кипения 2500 °C, временное сопротивление литого 10-12 кг/мм², деформируемого 18-25 кг/мм2,сплавов 38-42 кг/мм².

Твердость по Бринеллю 24-32кгс/мм², высокая пластичность: у технического 35 %, у чистого 50 %, прокатывается в тонкий лист и даже фольгу. Алюминий обладает высокой электропроводностью и теплопроводностью, 65 % от электропроводности меди, обладает высокой светоотражательной способностью. Алюминий образует сплавы почти со всеми металлами.


^ Химические свойства

Гидроксид алюминия


При нормальных условиях алюминий покрыт тонкой и прочной оксидной пленкой и потому не реагирует с классическими окислителями: с H2O (t°);O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией. Однако, при разрушении оксидной пленки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель.


Легко реагирует с простыми веществами:


1) с кислородом:

4Al + 3O2 = 2Al2O3


2) с галогенами:

2Al + 3Br2 = 2AlBr3


3) с другими неметаллами реагирует при нагревании:


а) с серой, образуя сульфид алюминия:

2Al + 3S = Al2S3


б) с азотом, образуя нитрид алюминия:

2Al + N2 = 2AlN


в) с углеродом, образуя карбид алюминия:

4Al + 3С = Al4С3


Список использованной литературы:


Френкель Я.И. «Кинетическая теория жидкостей», Л., 1975

Френкель Я. И. «Собрание избранных трудов», т. 3, М., 1959

Фишер И. З. «Физика простых жидкостей. Экспериментальные исследования», пер. с англ., М., 1972

Фишер И.3. «Статистическая теория жидкостей», М., 1961

Крокстон К. «Физика жидкого состояния», М., 1987

Скрышевский А. Ф. «Рентгенография жидкостей», К., 1966



еще рефераты
Еще работы по разное