Реферат: Гипоталамо-гипофизарная регуляция функций организма в онтогенезе

--PAGE_BREAK--

Рис. 1.2 Различие между гормональной и паракринной регуляцией. Железистая клетка А вырабатывает гормон, который в соответствии с классическим определением доставляется к клетке-мишени кровью. Железистая клетка Б вырабатывает гормон, обладающий паракринным действием, т.е. влияющий на соседние клетки. Этот же гормон, однако, может доставляться к органу – мишени и кровью. (По Шмидт Р. и Тевс Г.)

<img width=«648» height=«373» src=«ref-2_302226942-32578.coolpic» v:shapes="_x0000_i1027">
Рис. 1.3.Различия между нейромедиатором, нейрогомоном и паракринным нейрогормоном. Нейрон вырабатывает некое вещество. Если оно выделяется в синаптических окончаниях, то соответствует определению нейромедиатора. Аксон того же нейрона может иметь коллатераль, которая, оканчивается на кровеносном сосуде и высвобождает это вещество в кровоток – в таком случае оно ведет себя как нейрогормон. Из другой коллатерали аксона то же вещество в диффундирует в окружающую ткань и действует соседнюю группу клеток, т.е. оказывает паракринное действие. (По Шмидт Р. и Тевс Г.)

         В принципе к таким веществам, паракриннам, можно отнести и классические нейромедиаторы, с той только разницей, что источником химической информации в этом случае являются не специализированные клетки внутренней секреции, а нервные клетки. Нейромедиаторы не поступают в кровь, а диффундируют через узкую синаптическую щель в сторону постсинаптической нервной клетки. На постсинаптической мембране нейромедиатор, как и гормон, связывается со специфичным рецептором.

         Нейрогормоны. Недавно было установлено, что нервные клетки также могут вырабатывать пептидные и белковые гормоны и часто выделяют свои секреты в кровь, т. е. продуцируют нейрогормоны. Таким образом, следует признать, что большие участки центральной нервной системы способны выполнять эндокринную функцию. В чем же заключается основное различие между гормоном и нейромедиатором? Оно состоит в том, что нейромедиатор диффундирует через синаптическую щель, тогда как нейрогормон попадает в орган-мишень через кровеносную систему.( Березов Т 2004).

         В некоторых случаях терминали аксона нервной клетки выделяют вырабатываемое вещество в виде нейромедиатора, а коллатерали аксона того же нейрона оканчиваются на кровеносном сосуде и высвобождают то же вещество в виде нейрогормона. Поскольку выделяемые пептиды влияют на активность соседних клеток, их следует также считать нейромедиаторами. Нейрофизиологические опыты показали, что нейроны, выделяющие тот или иной классический нейромедиатор, могут быть подразделены на субпопуляции, высвобождающие разные нейропептиды. О функциях этих субпопуляций известно мало. В настоящее время представляется вероятным то, что многие нейроны способны вырабатывать помимо классических нейромедиаторов один или несколько других пептидов. 

         Поскольку многие полипептидные гормоны образуются из общего белкового предшественника, изменение синтеза одного из этих гормонов может приводить к параллельному изменению (ускорению или замедлению) синтеза ряда других гормонов. Так, из белка проопиокортина образуются кортикотропин и β — липотропин, из β — липотропина может образоваться еще несколько гормонов: γ-липотропин, β-меланоцитостимулирующий гормон, β-эндорфин, γ-эндорфин, α-эндорфин, метионин-энкефлин.

<img width=«624» height=«591» src=«ref-2_302259520-4807.coolpic» v:shapes="_x0000_s1026 _x0000_s1027 _x0000_s1028 _x0000_s1029 _x0000_s1030 _x0000_s1031 _x0000_s1032 _x0000_s1033 _x0000_s1034 _x0000_s1035 _x0000_s1036 _x0000_s1037 _x0000_s1038 _x0000_s1039 _x0000_s1040 _x0000_s1041 _x0000_s1042 _x0000_s1043 _x0000_s1044 _x0000_s1045 _x0000_s1046"><img width=«624» height=«588» src=«ref-2_302264327-73.coolpic» v:shapes="_x0000_i1028">

При действии специфических протеиназ из кортикотропина могут образовываться а-меланоцитостимулирующий гормон и АКТГ — подобный пептид средней доли гипофиза (по Федюкович Н. 2001).

 Рис 1.5. Прямые и обратные связи в нейроэндокринной системе регуляции.

<img width=«549» height=«597» src=«ref-2_302264400-35016.coolpic» v:shapes="_x0000_i1029">

Рис. 1.5 Регуляция активности эндокринных желез центральной нервной системой при участии гипоталамуса и гипофиза.

ТЛ – тиреолиберин, СЛ – соматолиберин, СС – соматостатин, ПЛ – пролактолиберин, ГЛ – гонадолиберин, КЛ – кортиколиберин, ТТГ – тиреотропный гормон, СТГ – соматотропный гормон, ПР – пролактин, ФСГ – фолликулостимулирующий гормон, ЛГ – лютенизирующий гормон, АКТГ – адренокортикотропный гормон. Сплошными стрелками обозначено активизирующее действие, пунктирным ингибирующее

         Рилизинг-гормоны высвобождаются из нервных отростков в области срединного возвышения и через гипоталамо-гипофизарную портальную систему с кровью поступают к аденогипофизу. (поВ. Н. Яковлев 2006).

         Секреция гормонов нейронами гипофизотрапной зоны гипоталамуса в портальную систему регулируется содержанием в плазме крови гормонов периферических эндокринных желез. Так, при повышении уровня кортизола в плазме в срединном возвышении высвобождается меньше АКТГ-РГ (рилизинг-гормон адренокортикотропного гормона) и в результате снижается секреция АКТГ аденогипофизом. Общий принцип такой регуляции заключается в том, что при повышении содержания в плазме гормонов периферических эндокринных желез уменьшается выброс соответствующего рилизинг-гормона в кровеносные сосуды медиальной области гипоталамуса. Обратная связь в этой системе регуляции может быть опосредована также самими гормонами гипоталамуса и аденогипофиза. Иллюстрацией прямых и обратных связей в нейроэндокринной системе может служить рисунок 1.6. <img width=«643» height=«401» src=«ref-2_302299416-22698.coolpic» v:shapes="_x0000_i1030">

 Рис .1.6. прямые и обратные связи синтеза гормонов.

 1 – медленно развивающееся и продолжительное ингибирование секреции гормонов и нейромедиаторов, а также изменение поведения и формирования памяти.2 – быстро развивающееся, но продолжительное ингибирование.3 – кратковременное ингибирование.

РАЗДЕЛ 2.МЕТОДЫ ИССЛЕДОВАНИЯ ГИПОТАЛАМО – ГИПОФИЗАРНОГО АППАРАТА
2.1. Методы исследования желез внутренней секреции

         Для изучения функций желез внутренней секреции известны следующие методы (Г. Косицкий.1985).

1.Наблюдение результатов полного или частичного удаления соответствующей железы внутренней секреции или воздействия на нее некоторых химических соединений, угнетающих активность.исследуемой железы или избирательно повреждающих клетки, образующие гормон.

2. Введение экстрактов, полученных из той или иной железы, или химически чистых гормонов нормальному животному или животному после удаления железы внутренней секреции или пересадки в организм ткани этой железы.

3. Сращивание (создание общего кровообращения) двух организмов, у одного из которых либо повреждена, либо удалена та или другая железа внутренней секреции.

4. Сравнение физиологической активности крови, притекающей к железе и оттекающей от нее.

5. Определение биологическими или химическими методами содержания определенного. гормона в крови и моче.

6. Изучение механизмов биосинтеза гормонов (чаще всего с помощью метода меченых атомов, т. е. радиоактивных изотопов).

7. Определение химической структуры и искусственный синтез гормона.

8. Исследование больных с недостаточной или избыточной функцией той или иной железы и последствий хирургических операций, проведенных у таких больных с лечебными целями.

         К наиболее важным и распространенным из них следует отнести следующие.

 1. Изучение последствий удаления (экстирпации) эндокринных желез. После удаления какой-либо эндокринной железы возникает комплекс расстройств, обусловленных выпадением регуляторных эффектов тех гормонов, которые вырабатываются в этой железе. Например, предположение о наличии эндокринных функций у поджелудочной железы нашло подтверждение в опытах И. Меринга и О. Минковского, показавших, что ее удаление у собак приводит к выраженной гипергликемии и глюкозурии; животные погибали в течение 2-3 нед. после операции на фоне явлений тяжелого сахарного диабета. В последующем было установлено, что эти изменения возникают из-за недостатка инсулина — гормона, образующегося в, островковом аппарате поджелудочной железы.

Вследствие травматичности оперативного вмешательства вместо хирургического удаления эндокринной железы может быть использовано введение химических веществ, нарушающих их гормональную функцию. Например, введение животным аллоксана нарушает функцию β — клеток поджелудочной железы, что приводит к развитию сахарного диабета, проявления которого практически идентичны расстройствам, наблюдаемым после экстирпации поджелудочной железы.

2. Наблюдение эффектов, возникших при имплантации желез.

У животного с удаленной эндокринной железой можно ее имплантировать заново в хорошо васкуляризированную область тела, например под капсулу почки или в переднюю камеру глаза. Такая операция называется реимплантацией. Для ее проведения обычно используют эндокринную железу, полученную от животного-донора.

После реимплантации постепенно восстанавливается уровень гормонов в крови, что приводит к исчезновению нарушений, возникших ранее в результате дефицита этих гормонов в организме. Например, Бертольдом (1849) было показано, что у петухов пересадка половых желез в брюшную полость после кастрации предотвращает развитие посткастрационного синдрома. Возможна также пересадка эндокринной железы животному, у которого операция экстирпации ранее не производилась. Последнее может быть использовано для изучения эффектов, возникающих при избытке гормона в крови, так как его секреция в данном случае осуществляется не только собственной эндокринной железой животного, но и имплантированной.

З. Изучение эффектов, возникших при введении экстрактов эндокринных желез. Нарушения, возникшие после хирургического удаления эндокринной железы, могут быть откорректированы посредством введения в организм достаточного количества экстракта данной железы или индивидуального гормона.

4. Использование радиоактивных изотопов. Иногда для исследования функциональной активности эндокринной железы может быть использована ее способность захватывать из крови и накапливать определенное соединение. Известно, например, что щитовидная железа активно поглощает йод, который затем используется для синтеза тироксина и трийодтиронина. При гиперфункции щитовидной железы накопление йода усиливается, при гипофункции наблюдается обратный эффект. Интенсивность накопления йода может быть определена путем введения в организм радиоактивного изотопа 131 I с последующей оценкой радиоактивности щитовидной железы. В качестве радиоактивной метки могут быть введены также соединения, которые используются для синтеза эндогенных гормонов и включаются в их структуру. В последующем можно определить радиоактивность различных органов и тканей и оценить, таким образом, распределение гормона в организме, а также найти его органы-мишени.

5. Определение количественного содержания гормона. В ряде случаев для выяснения механизма какого-либо физиологического эффекта целесообразно сопоставить его динамику с изменением количественного содержания гормона в крови или в другом исследуемом материале.

К наиболее современным относятся методы радиоиммунологическогo определения концентрации гормонов в крови. Эти методы основаны на том, что меченный радиоактивной меткой гормон и гормон, содержащийся в исследуемом материале, конкурируют между собой за связывание со специфическими антителами: чем больше в биологическом материале содержится данного гормона, тем меньше свяжется меченых молекул гормона, так как количество гормонсвязывающих участков в образце постоянное.

6.Важное значение для понимания регуляторных функций желез внутренней секреции и диагностики эндокринной патологии имеют клинические методы исследования. К ним относятся диагностика типичных симптомов избытка или недостатка того или иного гopмoнa, использование различных функциональных проб, рентгенологические, лабораторные и другие методы исследования. (Г. Косицкий.1985)
2.2. Исследования гипоталамуса в эксперименте.

         Данные систематических исследований гипоталамуса при помощи локального электрического раздражения свидетельствуют о том, что в этом центре существуют нервные структуры, управляющие самыми разнообразными поведенческими реакциями. В опытах с использованием других методов, например разрушения или химического раздражения, это предположение было подтверждено и расширено. В качестве примера можно привести афагию (отказ от пищи), возникающую при поражениях латеральных областей гипоталамуса, электрическое раздражение которых приводит к пищевому поведению (так называемых пищевых центров, или центров голода). Разрушение медиальных областей гипоталамуса, раздражение которых тормозит пищевое поведение (центров насыщения), сопровождается гиперфагией (потреблением чрезмерного количества пищи). Для химического раздражения нейронных популяций можно использовать такие вещества, которым приписывают роль медиаторов в гипоталамусе, например норадреналин, ацетилхолин; глицин, γ-аминомасляная кислота, нейропептиды. Так, микроинъекция норадреналина в гипоталамус приводит к резкому возрастанию потребления пищи, а микроиньекция ацетилхолина — к увеличению потребления жидкости.

         Области гипоталамуса, раздражение которых приводит к поведенческим реакциям, существенно перекрываются. В связи с этим пока еще не удалось выделить функциональные или анатомические скопления нейронов, отвечающие за то или иное поведение. Так, ядра гипоталамуса, выявляемые при помощи нейрогистологических методов, лишь весьма приблизительно соответствуют (или вовсе не соответствуют) областям, раздражение которых сопровождается поведенческими реакциями. Таким образом, нервные образования, обеспечивающие формирование целостного поведения из отдельных реакций, не следует рассматривать как четко очерченные анатомические структуры (на что могло бы натолкнуть существование таких терминов, как «центр голода» и «центр насыщения»).( Т Алейникова 2006).

          Нейронная организация гипоталамуса, благодаря которой это небольшое образование способно управлять множеством жизненно важных поведенческих реакции и нейрогуморальных регуляторных процессов, остается загадкой. Возможно, группы нейронов гипоталамуса отвечающие за выполнение какой-либо функции, отличаются друг от друга афферентными и эфферентными связями, медиаторами, расположением дендритов и. Можно предположить, что в малоизученных нервных цепях гипоталамуса заложены многочисленные программы. Активация этих программ под влиянием нервных сигналов от вышележащих отделов мозга (например, лимбической системы) и/или сигналов от рецепторов и внутренней среды организма может приводить к различным поведенческим и нейрогуморальным регуляторным реакциям.

         В течение длительного времени предполагали, что краниальные отделы гипоталамуса ответственны за соматические вегетативные и эндокринные реакции, способствующие восстановлению и сохранению резервов организма, а также пищеварению и выделению. И эти функции связывали с возбуждением  парасимпатической системы  и в совокупности называли трофотропной реакцией. Считалось также, что возбуждение каудальных частей гипоталамуса приводит к активации норадренергической симпатической системы, мобилизации энергии организма и увеличению его способности к физической нагрузке. Такие эффекты получили название эрготропных реакций.

Согласно подобным представлениям, введенным Гессом, гипоталамус состоит из двух различных морфофункциональных отделов и их взаимодействие отражает антагонизм между симпатическим и парасимпатическим отделами периферической вегетативной нервной системы.

         Многочисленные эксперименты, проведенные с целью подтвердить или опровергнуть эту гипотезу, внесли большой вклад в понимание функциональной роли гипоталамуса. Однако сама эта гипотеза, по-видимому, носит общий характер, чтобы объяснить различные функции этого центра.(А… Генина 1988).


РАЗДЕЛ 3 РЕГУЛЯЦИЯ ГИПОТАЛАМО – ГИПОФИЗАРНОЙ СИСТЕМЫ
3.1. Прямые и обратные связи в регуляции синтеза гормонов

         Все процессы жизнедеятельности организма строго согласованы между собой по скорости, времени и месту протекания. В организме человека эту согласованность осуществляют внутриклеточные и межклеточные механизмы регуляции, важнейшую роль в которых играют гормоны и нейромедиаторы. Специфические регуляторы, которые секретируются эндокринными железами в кровь или лимфу, а затем попадают на клетки мишени, называют гормонами вещества, которые выделяются из пресинаптических нервных окончаний в синаптическую щель и вызывают биологический эффект связываясь с рецепторами постсинаптической мембраны, называют нейромедиаторами. Функциональная активность эндокринной железы может регулироваться «субстратом», на который направлено действие гормона.

Так, глюкоза стимулирует секрецию инсулина из β -клеток панкреатических островков (островки Лангерганса), а инсулин понижает концентрацию глюкозы в крови; активируя ее транспорт в мышцы и печень. Это происходит следующим· образом. Глюкоза входит в β -клетки поджелудочной железы через переносчик глюкозы и сразу же фосфорилируется глюкокиназой, после чего вовлекается в гликолиз. Образующийся при этом АТФ ингибирует калиевые каналы, вследствие чего снижается мембранный потенциал β-клеток и активируются потенциалзависимые кальциевые каналы. Входящий в β-клетку кальций стимулирует слияние везикул, содержащих инсулин, с плазматической мембраной и секрецию инсулина. Инсулин активирует перенос глюкозы в печень, сердце и скелетные мышцы, вследствие чего уровень глюкозы в крови снижается, замедляется ее вход в β — клетки и уменьшается секреция инсулина (Сапин М 2002).

Такой же механизм лежит в основе секреции паратгормона (паратиреоидный гормон, паратирин) и кальцитонина. Оба гормона влияют на концентрацию кальция  и фосфатов в крови. Паратиреоидный гормон вызывает выход минеральных веществ из кости и стимулирует реабсорбцию кальция в почках и кишечнике, в Результате чего возрастает концентрация кальция в плазме крови.

Кальцитонин, напротив, стимулирует поступление кальция и фосфатов в костную ткань, в результате чего концентрация минеральных веществ в крови снижается. При высокой концентрации кальция в крови подавляется секреция паратиреоидного гормона и стимулируется секреция кальцитонина. В случае снижения концентрации кальция в крови секреция паратиреоидного гормона усиливается, а кальцитонина — ослабляется.

Такая регуляция постоянства внутренней среды организма, происходящая по принципу отрицательной обратной связи, очень эффективна для поддержания гомеостаза, однако не может выполнять все задачи адаптации организма. Например, кора надпочечников продуцирует стероидные гормоны в ответ на голод, болезнь, эмоциональное возбуждение и т. п. Чтобы эндокринная система могла отвечать на свет, звуки, запахи, эмоции должна существовать связь между эндокринными железами и  нервной системой. Основные связи между нервной и эндокринной системами регуляции осуществляются посредством взаимодействия гипоталамуса и гипофиза. Нервные импульсы, приходящие в гипоталамус, активируют секрецию так называемых рилизинг-факторов (либеринов и статинов): тиреолиберина, соматолиберина, пролактолиберина, гонадолиберина и кортиколиберина, а также соматостатина и пролактостатина. Мишенью для либеринов и статинов, секретируемых гипоталамусом, является гипофиз. Каждый из либеринов взаимодействует с определенной популяцией клеток гипофиза и вызывает в них синтез соответствующих тропинов: тиреотропина, соматотропного гормона, пролактина, гонадотропного гормона, (гонадотропины лютеинизирующий и фолликулостимулирующий), а также адренокортикотропного гормона (АКТГ,_ кортикотропин). Статины оказывают на гипофиз влияние, противоположное действию либеринов, подавляют секрецию тропинов. Тропины, секретируемые гипофизом,, поступают в общий кровоток Н, попадая на соответствующие железы, активируют в них. секреторные процессы.( Рафф Г 2001).

Молекула соматолиберина является самой крупной среди либеринов, она состоит из 15 аминокислотных остатков; самая маленькая молекула — трипептид — у тиреолиберина. Молекулы тропинов, образующихся в гипофизе, содержат от 13 до 198 аминокислотных остатков.

Регуляция деятельности гипофиза и гипоталамуса, кроме сигналов, идущих. «сверху-вниз», осуществляется гормонами «исполнительных» жёлез. Эти «обратные» сигналы поступают в гипоталамус и затем передаются в гипофиз, что приводит к изменению секреции соответствующих тропинов. После удаления или атрофии эндокринной железы Стимулируется секреция соответствующего тропного гормона; при гиперфункции железы секреция соответствующего тропина подавляется.

Обратные связи не только позволяют регулировать концентрацию гормонов в крови, но и участвуют в дифференцировке гипоталамуса в онтогенезе. Образование половых· гормонов в женском — организме происходит циклически, что Объясняется циклической секрецией гонадотропных гормонов. Синтез этих гормонов контролируется гипоталамусом, образующим релизинг-фактор этих тропинов (гонадолиберин). Если самке пересадить гипофиз самца, то пересаженный гипофиз начинает функционировать циклично. Половая дифференцировка гипоталамуса происходит под действием андрогенов. Если самца лишить половых желез, продуцирующих андрогены, то гипоталамус будет дифференцироваться по женскому типу.

В железах внутренней секреции иннервированы, как правило, только сосуды, а эндокринные клетки изменяют свою биосинтетическую и секреторную активность лишь под действием метаболитов, кофакторов и гормонов, причем не только гипофизарных. Так, ангиотензин 11 стимулирует синтез и секрецию альдостерона. Отметим также, что некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях. Например — соматостатин (гормон гипоталамуса, ингибирующий образование и секрецию гормона роста) обнаружен также в поджелудочной железе где он подавляет секрецию инсулина и глюкагона.

Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипоталамуса подходят аксоны нейронов, расположенных в коре больших полушарий и подкорковых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную активность гипоталамуса как активирующее, так и тормозное влияние. ( Т Алейникова 2006).

Поступающие из мозга нервные импульсы гипоталамус «превращает» в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступающих в гипоталамус от желез и тканей, подчиненных ему.

Тропины, образующиеся в гипофизе, не только регулируют деятельность подчиненных желез, но и выполняют самостоятельные эндокринные функции. Например, пролактин оказывает лактогенное действие, а также тормозит процессы дифференцировки клеток, повышает чувствительность половых желез к гонадотропинам, стимулирует родительский инстинкт. Кортикотропин является не только стимулятором стерондогенеза, но и активатором липолиза в жировой    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по медицине